Novel Spectroscopic Schemes using a Highly Brilliant Laser-Produced Plasma Source

I. Mantouvalou*¹, K. Witte¹, J. Baumann¹, M. Spanier¹, A. Jonas¹, C. Herzog¹, S. Martyanov¹, D. Grötzsch¹, R. Jung², H. Stiel², B. Kanngießer¹

¹Technical University of Berlin, Berlin, Germany ²Max-Born-Institut, Berlin, Germany Berlin Laboratory for innovative X-ray Technologies (BLiX)

The BLiX laser-produced plasma source emits broadband radiation in the range between 1 and 20 nm with 100 Hz repetition rate and a source size of $\sim 35 \mu m$. With two beamlines for parallel measurements, 3 possible laser pulse durations and continuous 8 hours a day operation, the source proves to be a flexible tool for routine measurements. We present 2 applications showing the versatility of the source using new optical and detection schemes.

Soft X-ray absorption spectroscopy measurements employing reflection zone plates at the C and N K-edge show a resolution of $\lambda/\Delta\lambda\sim1000$. The high efficiency of the dispersive elements enables single shot measurements, limiting the exposure time to the pulse duration of the source. With a novel multilayer optic, angle-resolved soft X-ray emission spectroscopy measurements were performed on layered samples with an energy-dispersive area detector. The presented measurements prove that nm-resolved elemental depth profiling is feasible in the laboratory.

References

- [1] I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiel, B. Kanngießer, and W. Sandner. Rev. Sci. Instr. **86(3)**, 035116, (2015)
- [2] I. Mantouvalou, R. Jung, J. Tuemmler, H. Legall, T. Bidu, H. Stiel, W. Malzer, B. Kanngießer and W. Sandner, Rev. Sci. Instr. **82**, 066103(2011)

^{*} ioanna.mantouvalou@tu-berlin.de